## Unified Engineering

## Signals and Systems Problem S1

Reading: Sections 3.1 and 3.2 in the text
Given that a LTI system is described by the following differential equation

$$
\frac{d^{2} y(t)}{d t^{2}}+a \frac{d y(t)}{d t}+b y(t)=\frac{d x(t)}{d t}+c x(t)
$$

where $x(t)$ is the input and $y(t)$ is the output.
i) Assume that $x(t)$ is a complex exponential input and that the output $y(t)$ is of the form given in equation (3.5) in the text. Substitute for $x(t)$ and $y(t)$ in the LTI system differential equation.
ii) Perform the indicated differentiations and use your result to determine the complex amplitude factor $H(s)$, which is also known as the system transfer function.
iii) Determine the magnitude and angle of $H(s)$, as function of the frequency $(\omega)$, when $s=j \omega$.

